Wie sind Exponentialfunktionen aufgebaut?
Bei jeder Exponentialfunktion ist im Potenzterm a x a^x ax die Basis a eine fest gewählte positive reelle Zahl (ungleich 1). Der Exponent enthält die Funktionsvariable x. Daher die Bezeichnung „Exponentialfunktion“. Der Faktor b ist eine beliebige von Null verschiedene reelle Zahl.
Was ist die allgemeine Definition der Exponentialgleichung?
Die allgemeine Definition der Exponentialgleichung sieht deshalb so aus: Dabei ist a > 0 a > 0 mit a ≠ 1 a ≠ 1 die Basis der Potenz, x x ist der unbekannte Exponent und b b ist das Ergebnis der Potenz. Vereinfacht gesagt, ist in so einer Exponentialgleichung also immer die passende Hochzahl x x gesucht, welche die Gleichung erfüllt.
Was sind die Eigenschaften von Exponentialfunktionen?
Eigenschaften von Exponentialfunktionen. Alle Exponentialkurven schneiden die y-Achse im Punkt (0|1). (Laut einem Potenzgesetz gilt nämlich: a0 = 1 .) ⇒ Der y-Achsenabschnitt der Exponentialfunktion ist y = 1. Exponentialkurven haben keinen Schnittpunkt mit der x-Achse. ⇒ Exponentialfunktionen haben keine Nullstellen!
Was ist exponentielles Wachstum?
Unter der Population kannst du dir zum Beispiel die Anzahl an Bakterien oder die Dicke eines Papiers vorstellen. Die definierende Eigenschaft für exponentielles Wachstum ist folgende: Unterscheiden sich die Werte der Population zwischen zwei benachbarten Zeitpunkten immer um den gleichen Faktor, dann liegt exponentielles Wachstum vor.
Was ist die Exponentialkurve?
Alle Exponentialkurven verlaufen oberhalb der x -Achse. ⇒ Die Wertemenge der Exponentialfunktion ist W = R +. Alle Exponentialkurven kommen der x -Achse beliebig nahe. ⇒ Die x -Achse ist waagrechte Asymptote der Exponentialkurve. Alle Exponentialkurven schneiden die y -Achse im Punkt ( 0 | 1). (Laut einem Potenzgesetz gilt nämlich: a 0 = 1 .)