Wie bestimme ich eine waagrechte Asymptote?
Ist der Zählergrad kleiner als der Nennergrad, so hat die Funktion eine waagrechte Asymptote bei y=0. Ist der Zählergrad gleich dem Nennergrad, so hat die Funktion eine waagrechte Asymptote bei y≠0. Ist der Zählergrad gleich ‚Eins plus Nennergrad‘, so hat die Funktion eine schräge Asymptote.
Können waagerechte Asymptoten geschnitten werden?
Es kann passieren, dass der Funktionsgraph und die Asymptote in einem Abschnitt auseinandergehen. Genau so können sie sich manchmal berühren oder sogar schneiden. Wenn man in positive Richtung entlang der x-Achse geht wird deutlich, dass y = 2 y=2 y=2 die Asymptote der Funktion ist.
Wie kann eine Asymptote definiert werden?
Dies kann auch dadurch bewiesen werden, dass tan(±½π) nicht definiert ist. Eine Asymptote muss allerdings keine perfekte horizontale oder vertikale Linie sein. Bei der Funktion f(x)=x+x -1 wird die Asymptote durch die Funktion g(x)=x beschrieben.
Wie kann man den Typ der Asymptoten bestimmen?
Mithilfe des Zähler- und Nennergrades kann man schon den Typ der Asymptote bestimmen: Eine senkrechte Asymptote liegt vor, wenn man den Bruch vollständig gekürzt hat und der Nenner dann immer noch eine Nullstelle besitzt. Wie man die Form der einzelnen Asymptoten bestimmen kann, zeigen wir im Folgenden.
Was bedeutet die Funktionsgleichung der Asymptoten?
Das bedeutet, dass die schiefe Asymptote der Funktion die Funktionsgleichung besitzt. der Nennergrad um mehr als eins größer, so ist das asymptotische Verhalten des Funktionsgraphen kurvenförmig. Auch in diesem Fall wird die Funktionsgleichung der Asymptoten mithilfe der Polynomdivision und einer anschließenden Grenzwertbetrachtung ermittelt.
Was ist eine asymptotische Kurve?
Diese existiert, wenn der Zählergrad um mehr als 1 größer ist als der Nennergrad (also, wenn Zählergrad>Nennergrad+1). Eine asymptotische Kurve ist eine Asymptote, die keine Gerade, sondern eine Kurve ist, z.B. eine Parabel, die sich der Graph immer weiter annähert.