Inhaltsverzeichnis
Wie wachsen die Funktionswerte im Graph?
Steigt der Graph, so wachsen die Funktionswerte, d.h., für x 1 < x 2 ist auch f (x 1) < f (x 2). In diesem Fall heißt die Funktion in dem betrachteten Intervall streng monoton wachsend. Ist das nicht nur in einem bestimmten Intervall, sondern im gesamten Definitionsbereich
Wie ordne ich einem Gefäß den Graphen zu?
Ordne einem Gefäß den Graphen zu. Ordne einem Graphen das Gefäß zu. Behälter 1 wird langsamer gefüllt als Behälter 2, da 1 einen größeren Durchmesser hat. Beide Behälter werden aber gleichmäßig gefüllt. Behälter 3 wird zunächst langsam gefüllt und dann schneller, da sich der Durchmesser plötzlich verkleinert.
Welche Fertigkeiten sind hilfreich bei der Interpretation eines Graphen?
Bei der Interpretation eines Graphen sind folgende Fertigkeiten hilfreich: 1. Koordinaten von Punkten auf einem Funktionsgraphen ablesen. 2. Die Lage einzelner Punkte bezüglich eines Funktionsgraphen bestimmen. Ein Punkt kann über, unter oder auf dem Funktionsgraphen liegen.
Was sind die wichtigsten Punkte des Graphens?
Zusammenhänge, die mit Hilfe von Funktionen beschrieben werden können. In vielen Fällen spielen dabei besondere Punkte des Graphen eine wichtige Rolle. Das Maximum ist der größte Wert, den eine Funktion annimmt. Die Funktion f nimmt ihren größten Wert im Punkt (7|7) an. Das Minimum ist der kleinste Wert, den eine Funktion annimmt.
Wie lässt sich eine Exponentialfunktion beeinflussen?
Nun gibt es Parameter, die die Funktion stark beeinflussen. Eine Exponentialfunktion lässt sich auch allgemein durch die Formel f ( x) = b ⋅ a c ⋅ x + d + e f ( x) = b ⋅ a c ⋅ x + d + e darstellen. Neben der Aufzählung findest du die möglichen Einflüsse grafisch dargestellt. Die Basis a a bildet den Kern der Funktion.
Welche Funktionen sind in der Tabelle stetig?
Neben den in der Tabelle genannten Funktionen sind auch alle Funktionen, die sich aus diesen Funktionen durch Grundrechenarten oder Verkettung zusammensetzen lassen, in ihrer Definitionsmenge stetig. Außerdem sind differenzierbare Funktionen stetig.
Was sind Wachstumsfunktionen?
Wachstumsfunktionen sind monoton steigende Funktionen, die Vorgänge beschreiben, bei denen etwas zunimmt. In der Grafik entspricht das der Funktion f f. Zerfallsfunktionen sind monoton fallende Funktionen, die Vorgänge beschreiben, bei denen etwas abnimmt. In der Grafik entspricht das der Funktion g g.