Inhaltsverzeichnis
Was unterscheidet binär und Hexadezimalsystem?
Das Hexadezimalsystem verwendet die Basis 16, d.h. es gibt 16 verschiedene Ziffern, 0 bis 9 und zusätzlich die Buchstaben A bis F (sog. Mit einer 4-stelligen Binärzahl (auch als Halbbyte oder Nibble bezeichnet) lassen sich 16 (24 = 16) verschiedene Zahlen darstellen, und zwar 0 bis 15 (die Null zählt mit!).
Welche Zahl kommt nicht im Hexadezimalsystem vor?
Für das Zählen und Rechnen im Hexadezimalsystem gibt es eine Eselsbrücke: A = 10 und B = 11 kann sich jeder merken. C wie zwölf, D wie dreizehn, E für vierzehn kommt vor F wie fünfzehn.
Wie viele Bit bzw Byte werden benötigt um jede zweistellige Zahl im Hexadezimalsystem speichern zu können?
Die Basis für das Hexadezimalsystem ist 16. In einem Byte kann eine zweistellige Hexadezimalzahl codiert werden. Wenn sich in einer Hexadezimalzahl ein Buchstabe befindet, ist es einfach diese Zahl als Hex-Zahl zu erkennen. Bei einer Zahl mit Ziffern ist das Erkennen einer Hex-Zahl nicht möglich.
Was sind die Hexadezimalzahlen?
Schauen wir uns nun das Hexadezimalsystem an. Im Gegensatz zu den Oktalzahlen sind die Hexadezimalzahlen etwas speziell, denn sie enthalten auch Buchstaben. Das liegt daran, dass wir nicht genug Ziffern haben, um null bis fünfzehn abzudecken. Also setzen wir für die Ziffern zehn bis fünfzehn die Buchstaben A bis F ein.
Was kann man mit dem Hexadezimalsystem notieren?
Mit dem Hexadezimalsystem können auf einfachere und kürzere Weise Binärzahlen notiert werden. Mit einer 4-stelligen Binärzahl (auch als Halbbyte oder Nibble bezeichnet) lassen sich 16 (24 = 16) verschiedene Zahlen darstellen, und zwar 0 bis 15 (die Null zählt mit!). Da das Hexadezimalsystem die Basis 16 (= 24) verwendet, reicht eine (!)
Wie viele Binärzahlen gibt es in der Hexadezimalzahl?
Mit einer 4-stelligen Binärzahl (auch als Halbbyte oder Nibble bezeichnet) lassen sich 16 (24 = 16) verschiedene Zahlen darstellen, und zwar 0 bis 15 (die Null zählt mit!). Da das Hexadezimalsystem die Basis 16 (= 24) verwendet, reicht eine (!) Hexadezimalzahl aus, um vier Bits (Binärziffern) darzustellen.