Wann sind lineare Funktionen senkrecht?
Um ein Beispiel mit „senkrecht“ anzuführen, könnte eine Aufgabe lauten: „Die gesuchte Gerade geht durch den Punkt A(2|3) und steht senkrecht auf g(x) = 2·x + 3 . Dazu muss man sich erinnern, dass für zwei senkrecht aufeinander stehende Geraden gilt: m1 · m2 = -1 (vgl. Schnittpunkte von linearen Graphen).
Wie wird die Fläche zwischen den beiden Funktionen berechnet?
Die Fläche zwischen den beiden Funktionen wird durch folgendes Integral berechnet: Wenn sich zwei Graphen schneiden, wird ab diesem Punkt die untere Funktion die obere und die oberer Funktion die untere. Würden wir dies nicht tun, so würden sich die positiven und negativen Fläche addieren und unser Flächeninhalt wäre falsch.
Warum sind zwei Funktionen identisch?
Zwei Funktionen sind genau dann identisch, wenn sie in Funktionsgleichung, Definitionsmenge und Wertemenge übereinstimmen. Demzufolge sind zwei Funktionen mit gleicher Funktionsgleichung, aber verschiedenen Definitionsmengen oder verschiedenen Wertemengen nicht identisch und können somit unterschiedliche Eigenschaften besitzen.
Wie ist die Funktionsgleichung in der Abbildung dargestellt?
In der Abbildung ist der Zusammenhang zwischen der Definitionsmenge und der Wertemenge noch einmal graphisch dargestellt. Die Funktionsgleichung ist dabei das Bindeglied zwischen den beiden Mengen: Meistens werden bei einer Funktion weder die Definitionsmenge noch die Wertemenge mit angegeben.
Warum ist eine Funktion nichts anderes als eine Funktion?
Grund dafür ist, dass eine Funktion nichts anderes als eine Zuordnung mit bestimmten Eigenschaften ist. Außerdem müssen wir unseren mathematischen Wortschatz um einige Vokabeln erweitern. Zurück zu unserem Beispiel: Die ö Anzahl Brötchen sowie den Preis können wir als Mengen verstehen. Die linke Menge besteht aus den Werten von ö Anzahl Brötchen.