Inhaltsverzeichnis
Wie hoch ist der Geschwindigkeitsbedarf einer Raketen?
Bei den meisten heutigen Raketen liegt der Geschwindigkeitsbedarf für einen 200 km Orbit so bei 9200-9700 m/s. Von den 4 Raketen die wir in der oberen Tabelle aufgeführt haben schafft nur eine einzige diese Geschwindigkeit. Das Stufenprinzip ist hier die Lösung. Die Raketengleichung setzt man nun für jede Stufe separat um.
Wie entsteht eine Rakete durch eine Verbrennung von Gase?
Raketen entwickeln durch eine Verbrennung Gase die Sie mit einer Masse M und einer Geschwindigkeit V ausstoßen. Dies bewirkt eine Kraft die berechenbar ist nach M*V. Genau die gleiche Kraft kann nun die Rakete in die Gegenrichtung beschleunigen, auch hier hat die Rakete eine Masse M1 und wird um V1 beschleunigt:
Was ist die Größe 1 für eine Rakete?
Wir erhalten Die Größe 1 bezeichnet man als Massenstrom oder Durchsatz; sie beschreibt, wieviel Treibstoffmasse pro Zeiteinheit von der Rakete ausgestoßen wird. Wirkt nun auf die Rakete eine äußere Kraft wie z.B. die Gravitationskraft oder der Luftwiderstand, so gilt nach der allgemeinen (und klassischen) Formulierung des 2.
Wie wird die Rakete ausgestoßen?
Die Treibstoffgase werden mit hoher Geschwindigkeit ausgestoßen. Die Rakete (genauer der Raketenmotor) übt eine Kraft auf die Gasteilchen aus (actio) und die Gasteilchen ihrerseits eine Kraft auf die Rakete (reactio). Man könnte vereinfacht sagen: „Die Rakete drückt sich vom ausgestoßenen Treibstoffgas ab“.
Wie lernt man die Bewegungsgleichung der Rakete?
Um Aussagen über die Brennschlussgeschwindigkeit und die erreichbare Höhe zum Zeitpunkt – der sogenannten Brennschlusszeit – machen zu können, muss man die Bewegungsgleichung der Rakete integrieren. Dieses Verfahren lernt man üblicherweise erst im Mathematikunterricht der Oberstufe.
Wie groß ist der Druck bei Raketen von der Erde aus?
Je kleiner der Druck ist desto geringer ist diese Restenergie. Bei Raketen die von der Erde aus starten muss der Mündungsdruck über 1 Bar liegen, sonst kommt es zu einer Schockfront beim Aufprall auf die Luft die am Boden einen Druck von 1 Bar hat, zu Verwirbelungen und Staudruck in die Düse.
Ist die Rakete eine äußere Kraft?
Wirkt nun auf die Rakete eine äußere Kraft wie z.B. die Gravitationskraft oder der Luftwiderstand, so gilt nach der allgemeinen (und klassischen) Formulierung des 2. Axioms von NEWTON . Damit erhalten wir Die Größe bezeichnet man als Schubkraft. Mit erhalten wir schließlich Dies ist die Bewegungsgleichung der Rakete.
Warum kühlen sich Raketen in der ersten Stufe ab?
Daher können Raketen in der ersten Stufe nicht den gleichen spezifischen Impuls erreichen wie in den oberen Stufen. Die Werte liegen zirka 10-15 \% darunter. Beim Expandieren in der Düse kühlen sich Gase aber auch ab. Es darf nicht soweit kommen, das sie sich wieder verflüssigen, auch dies begrenzt die Düsengröße.
Was ist die Endgeschwindigkeit einer einstufigen Rakete?
Diese besagt, dass die Endgeschwindigkeit einer einstufigen Rakete im schwerefreien Raum nur von der Ausströmgeschwindigkeit der Triebwerksgase und dem Verhältnis von Startmasse zur Endmasse (Startmasse – Treibstoff) abhängt.
Was muss eine Rakete selbst mitbringen?
Eine Rakete muss jeglichen Treibstoff also selbst mitbringen. Raketen lassen sich auch darüber definieren, wie sie eigentlich „vorwärts“ kommen: Es sind die Abgase, welche die Rakete vorwärts schieben – anders als bei einem Auto, für das sie nur Abfallprodukt sind.
Wie verringert sich das Gewicht der Rakete?
Auf diese Weise verringert sich das Gewicht der Rakete immer mehr. In der Praxis sieht das Ganze dann wie folgt aus: Wenn der Countdown bei „Null“ ankommt, wird die Hauptstufe gezündet. Sieben Sekunden später zünden die Feststoffbooster und die Rakete hebt ab. Diese werden ca. zweieinhalb Minuten nach dem Start abgesprengt.