Wann ist f stetig?
Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.
Wie kann man zeigen dass eine Funktion stetig ist?
Bildlich gesprochen ist eine Funktion stetig, wenn du sie als eine einzelne Linie ohne Absetzen deines Stiftes zeichnen kannst. Mathematischer formuliert findest du die Stetigkeit von Funktionen, indem du den rechtsseitigen Grenzwert mit dem linksseitigen Grenzwert vergleichst.
Wie lässt sich eine gleichmäßige Konvergenz für Funktionen definieren?
Völlig analog lässt sich gleichmäßige Konvergenz für Funktionen in einen uniformen Raum mit einem System von Nachbarschaften definieren: Ein Filter (oder allgemeiner eine Filterbasis) auf der Menge der Funktionen für eine Menge konvergiert genau dann gegen eine Funktion , wenn für jede Nachbarschaft ein existiert, sodass .
Was ist die Funktionsgleichung einer linearen Funktion?
Die Funktionsgleichung einer linearen Funktion. Die Gleichung einer linearen Funktion hat immer die Gestalt y = mx + b . Sie wird auch Normalform der Geradengleichung genannt.Dabei ist m die Steigung und b der y-Achsenabschnitt der Funktion.
Ist die gleichmäßige Konvergenz stetig?
Wenn gleichmäßig gegen konvergiert, dann ist stetig. Anstatt gleichmäßige Konvergenz zu fordern, ist es auch ausreichend, von einfach-gleichmäßiger Konvergenz auszugehen. Sei eine gegen punktweise konvergente Funktionenfolge. Alle seien noch dazu in stetig. ist in stetig genau dann, wenn in dem Punkt uniform konvergent ist.
Ist die Grenzfunktion differenzierbar?
Im Allgemeinen braucht die Grenzfunktion nicht einmal differenzierbar zu sein, und wenn sie es ist, muss ihre Ableitung keineswegs gleich dem Grenzwert der Ableitungen der Folge sein. So konvergiert z.B. die durch definierte Funktionenfolge gleichmäßig gegen 0, die Folge der Ableitungen aber nicht.