Warum verwendet man die E-Funktion?
Exponentialfunktionen werden in den Wirtschaftswissenschaften v.a. als Wachstumsfunktionen verwendet. In der Statistik spielt die exponentielle Trendfunktion für die Beschreibung volkswirtschaftlicher und demografischer Prozesse eine wichtige Rolle.
Wann ist etwas eine Exponentialfunktion?
Eigenschaften. Die Variable (x) steht im Exponenten. Die Basis (a) muss eine positive reelle Zahl sein (a \in \mathbb{R}, a > 0, a \neq 1). Wir unterscheiden zwei Arten von Exponentialfunktionen: Exponentialfunktionen deren Basis größer als 1 ist und Exponentialfunktionen deren Basis zwischen 0 und 1 liegt.
Was ist eine natürliche Exponentialfunktion?
Die natürliche Exponentialfunktion ist eine Funktion, die als Basis die eulersche Zahl e e hat. Sie beschreibt wachsende Vorgänge und zugleich ihre momentanen Änderungsraten. Die Eigenschaft der natürlichen Exponentialfunktion stellt in der Funktionsanalyse einen wichtigen Vorteil dar.
Was ist die Ableitung der Exponentialfunktion?
Die Ableitung der Exponentialfunktion allgemein ist etwas komplizierter als bei der e-Funktion. Grund hierfür ist, dass du jede Exponentialfunktion mit einem einfachen Trick umschreiben kannst: . Die rechte Seite davon kannst du mit der Kettenregel leicht ableiten.
Was ist der Unterschied zwischen Potenzfunktion und Exponentialfunktion?
Einen wesentlichen Unterschied zwischen Potenzfunktion und Exponentialfunktion erkennen wir bereits daran, dass bei einer Exponentialfunktion die Basis nie eine negative Zahl sein darf (im Rahmen des Schulunterrichts).
Wie lässt sich die Konvergenz der Exponentialfunktion zeigen?
Die punktweise Konvergenz der für die Definition der Exponentialfunktion verwendeten Reihe lässt sich für alle reellen und komplexen einfach mit dem Quotientenkriterium zeigen; daraus folgt sogar absolute Konvergenz. Der Konvergenzradius der Potenzreihe ist also unendlich.