Inhaltsverzeichnis
Was gehört alles zu Exponentialfunktion?
Bei jeder Exponentialfunktion ist im Potenzterm a x a^x ax die Basis a eine fest gewählte positive reelle Zahl (ungleich 1). Der Exponent enthält die Funktionsvariable x. Daher die Bezeichnung „Exponentialfunktion“. Der Faktor b ist eine beliebige von Null verschiedene reelle Zahl.
Wie berechnet man die Stammfunktion einer E Funktion?
Partielle Integration Wie kannst du also die Stammfunktion bilden, wenn deine Exponentialfunktion f(x) = 2x · ex ist? Für die partielle Integration musst du zuerst deine Teilfunktionen u und v‘ aufschreiben: f(x) = u · v‘. Danach rechnest du die Ableitung u‘ und die Stammfunktion von v aus.
Was ist eine natürliche Exponentialfunktion?
Die natürliche Exponentialfunktion ist eine Funktion, die als Basis die eulersche Zahl e e hat. Sie beschreibt wachsende Vorgänge und zugleich ihre momentanen Änderungsraten. Die Eigenschaft der natürlichen Exponentialfunktion stellt in der Funktionsanalyse einen wichtigen Vorteil dar.
Was sind die Rechenregeln für die Exponentialfunktion?
Rechenregeln für die Exponentialfunktion lassen sich anhand der Rechenregeln für Potenzen ableiten. Da, wie oben besprochen, zum Beispiel gilt, ist genauso mit der Basis die folgende Gleichung gültig: . Mit dem Summenzeichen kann man diese Formel noch auf längere Summen erweitern, und es gilt:
Was ist die Ableitung der Exponentialfunktion?
Die Ableitung der Exponentialfunktion allgemein ist etwas komplizierter als bei der e-Funktion. Grund hierfür ist, dass du jede Exponentialfunktion mit einem einfachen Trick umschreiben kannst: . Die rechte Seite davon kannst du mit der Kettenregel leicht ableiten.
Wie hoch ist die Exponentialfunktion im negativen Bereich?
Im negativen Bereich nehmen die Funktionen Werte zwischen 0 und 1 an, da die negativen Exponenten in diesem Bereich wie oben besprochen zu einem Bruch führen, der kleiner als 1 ist. Je größer die Basis ist, desto steiler steigt die Exponentialfunktion an.