Was ist ein QQ?
Ein Quantil-Quantil-Diagramm, kurz Q-Q-Diagramm (englisch quantile-quantile plot, kurz Q-Q-Plot) ist ein exploratives, grafisches Werkzeug, in dem die Quantile zweier statistischer Variablen gegeneinander abgetragen werden, um ihre Verteilungen zu vergleichen.
Was zeigt ein QQ-Plot?
Der QQ-Plot (Quantile-Quantile-Plot) dient dazu, grafisch / durch Betrachtung zu prüfen, ob eine bestimmte Verteilung – i.d.R. eine Normalverteilung – vorliegt. Die Anzahl der möglichen Quantile entspricht der Anzahl der Messwerte. Sind die Daten (annähernd) normalverteilt, ergibt sich daraus eine diagonale Linie.
Wie wichtig ist die Interpretation des Q-Q-Plots?
Zur Interpretation des Q-Q-Plots müssen Sie darauf achten, wie gut die Punkte mit der Geraden übereinstimmen. Je näher die Punkte an der Gerade liegen, desto mehr spricht die Graphik für eine Normalverteilung.
Was ist das Q-Q-Diagramm?
Das Q-Q-Diagramm (bzw. Q-Q-Plot) ist eine Graphik, mir der eine Variable auf das Vorliegen einer Normalverteilung überprüft werden kann. Wir demonstrieren Ihnen die Erstellung eines Q-Q-Plots anhand eines Beispiels.
Wie vergleichst du die Verteilungen zweier quantitativer Variablen?
Beim QQ-Plot oder Quantil-Quantil-Diagramm vergleichst Du die Quantile der Verteilungen zweier quantitativer Variablen grafisch miteinander. Du trägst sie in einem Koordinatensystem der Größe nach geordnet gegeneinander ab vergleichst die Punkte: Liegen sie annähernd auf einer Geraden, liegt die Vermutung einer ähnlichen Verteilung nahe.
Wie ist die Graphik für eine Normalverteilung?
Je näher die Punkte an der Gerade liegen, desto mehr spricht die Graphik für eine Normalverteilung. Man erkennt in diesem Beispiel eine gute Übereinstimmung der Punkte mit der Geraden, da die Punkte entweder auf der Geraden oder sehr nah an der Geraden liegen. Somit deutet das Schaubild auf eine Normalverteilung hin.