Inhaltsverzeichnis
Was ist eine Funktion kurz?
Eine Funktion ist eine Beziehung zwischen zwei Mengen. Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge). Der Definitionsbereich wird durch die x-Werte (Argumente) gebildet, der Wertebereich durch die zugeordneten y-Werte. Diese y-Werte nennt man auch Funktionswerte oder Ordinaten.
Welche 3 Anforderungen werden an Treppen gestellt?
4.1 Grundlegende bauliche Anforderungen. Wesentlich für eine gut begehbare und verkehrssichere Treppe sind ausreichend große, ebene, rutschhemmende und tragfähige Auftrittsflächen in gleichmäßigen, mit dem Schrittmaß übereinstimmenden Abständen.
Was ist die Definition einer mathematischen Funktion?
Definition einer mathematischen Funktion. Eine Funktion ist eine Beziehung zwischen zwei Mengen. Meist werden die Elemente dieser Mengen und genannt. Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge). Der Definitionsbereich wird durch die x-Werte (Argumente) gebildet, der Wertebereich durch die zugeordneten
Was sind die Eigenschaften von Funktionstypen?
Wie du dies schon von linearen oder quadratischen Funktionen weißt, haben Funktionstypen bestimmte Eigenschaften. Das gilt natürlich auch für Exponentialfunktionen. Sie haben einen typischen Kurvenverlauf und Parameter, die diesen beeinflussen. Bei Exponentialfunktionen spielt die Basis eine wichtige Rolle. Diese darf auf keinen Fall negativ sein.
Was ist die Definitionsmenge einer Funktion?
Beispiel einer Funktion. Bei D = {1,2,3,4} handelt sich um die Definitionsmenge der Funktion. Sie gibt an, welche x -Werte in die Funktion eingesetzt werden dürfen: In diesem Fall darf man die Zahlen 1, 2, 3 und 4 für x einsetzen.
Was sind die Eigenschaften einer linearen Funktion?
Zu den Eigenschaften einer linearen Funktion gehören vor allem ihr Graph, die Steigung der Funktion und ihr (boldsymbol y)-Achsenabschnitt. Für die Darstellung linearer Funktionen als Graphen in einem Koordinatensystem gilt: Der Graph einer linearen Funktion ist immer eine Gerade, also eine nicht gebogene Linie.