Inhaltsverzeichnis
Was ist eine lineare Abbildung in der Algebra?
Für lineare Funktionen in der linearen Algebra siehe Lineare Abbildung. also eine Polynomfunktion höchstens ersten Grades, bezeichnet. Es handelt sich dabei jedoch nicht um eine lineare Abbildung im Sinne der linearen Algebra, sondern um eine affine Abbildung, da die Linearitätsbedingung im Allgemeinen nicht erfüllt ist.
Was ist die Lösungsmenge eines linearen Gleichungssystems?
Die Lösungsmenge eines linearen Gleichungssystems ist dann die Schnittmenge der Lösungen der einzelnen Gleichungen. Ein lineares Gleichungssystem ist genau dann lösbar, wenn der Rang der Koeffizientenmatrix A {displaystyle A} gleich dem Rang der erweiterten Koeffizientenmatrix ( A b ) {displaystyle (A;b)} ist.
Was ist eine lineare Gleichung?
Konstanten sind. Es gibt aber auch lineare Gleichungen mit mehreren Unbekannten und mit anderen mathematischen Objekten als Unbekannten, beispielsweise Folgen ( lineare Differenzengleichungen ), Vektoren ( lineare Gleichungssysteme) oder Funktionen ( lineare Differentialgleichungen ). Im allgemeinen Fall besitzt eine lineare Gleichung die Form
Was ist die Bezeichnung lineare Funktion?
In Anlehnung an diese Bezeichnung wird die Funktion für den Fall auch allgemeine lineare Funktion oder linear-inhomogene Funktion genannt. In diesem Artikel wird die häufig verwendete Bezeichnung lineare Funktion beibehalten.
Wie entstand die lineare Algebra?
Die Lineare Algebra entstand aus der Theorie der Matrizen und Determinanten (Augustin-Louis Cauchy, Cayley, James Joseph Sylvester). Die Erweiterung zur multilinearen Algebra (Tensorkonzept) begann Ende des 19. Jahrhunderts in der Differentialgeometrie (Gregorio Ricci-Curbastro, Tullio Levi-Civita) und Physik.
Was war die Entwicklung der modernen Algebra?
Von Ernst Steinitz wurde um 1909 die algebraische Theorie der Körper entwickelt. Von zentraler Bedeutung für die Entwicklung der modernen Algebra war die Schule von Emmy Noether in Göttingen, aus der das Standards setztende Lehrbuch Moderne Algebra von van der Waerden hervorging.
Welche Bedeutung hat die Algebra?
Weitere Bedeutungen sind unter Algebra (Begriffsklärung) aufgeführt. Die Algebra (von arabisch الجبر, DMG al-ǧabr „das Zusammenfügen gebrochener Teile“) ist eines der grundlegenden Teilgebiete der Mathematik; es befasst sich mit den Eigenschaften von Rechenoperationen.