Inhaltsverzeichnis
Was muss man beachten bei der Integration durch Substitution?
Bei der Integration durch Substitution muss man einige Punkte beachten. In diesem Zusammenhäng erklären wir zunächst die Integrationsformel und beweisen deren Gültigkeit. Anschließend zeigen wir anhand einiger Beispiele, wie du damit Integrationsaufgaben in der Praxis lösen kannst.
Wie geht es mit der Substitution?
Wie der Name schon sagt, wird bei der Substitution ein Term durch einen anderen ersetzt. In unserem Beispiel ersetzen wir 6x durch u, sodass u =6x. Als Nächstes müssen wir u nach x ableiten. Hier kommt auch das Differential zum Einsatz: Das Differential aus Punkt 2. wollen wir nun nach dx auflösen.
Was ist die Faustregel der Integration durch Substitution?
Substitutionsregel. Als Faustregel kann man sich merken, dass die Integration durch Substitution immer dann anzuwenden ist, wenn man beim Ableiten der Funktion die Kettenregel anwenden würde. Das ist der Fall, wenn es sich um ineinander verschachtelte (= verkettete) Funktionen handelt.
Was ist die Substitutionsmethode für ein Integral?
Mathematisch gesehen, wird die Substitutionsmethode für ein bestimmtes Integral so definiert: Was sofort auffällt, ist die starke Ähnlichkeit mit der Kettenregel: .
Welche Summenregeln gibt es bei der Integralrechnung?
Wie auch bei der Summenregel der Differentation gibt es bei der Integralrechnung auch eine Summenregel, die sehr ähnlich aussieht. Diese besagt, dass ihr Gliedweise integrieren dürft. Wie immer sind einige Beispiele für das Verständnis vermutlich am besten:
Wie setzt man die Integrationsgrenzen an?
Deshalb setzt man so genannte Integrationsgrenzen. Schaut euch dazu erst einmal die folgende Grafik an: Die Integrationsgrenzen werden meist mit a und b bezeichnet, wobei a die „untere“ Integrationsgrenze und „b“ die „obere“ Integrationsgrenze bezeichnen. Heißt auf gut Deutsch: Die Fläche unter der Funktion von a bis b ist gesucht.
Was sind die Grundlagen der Integralrechnung?
Integralrechnung: Grundlagen und Summenregel Im Folgenden zeigen wir euch, was es mit der Summenregel der Integralrechnung auf sich hat. Ziel ist es, die Fläche unter einer Funktion zu berechnen. Wir beginnen dabei mit der Untersumme. Schaut euch einmal die folgende Grafik an: In schwarz wird die Funktion dargestellt.