Inhaltsverzeichnis
Wie kann man Matrizen bewundern?
Und um ein Beispiel zu geben: du kannst jeden Abend die Lösung eines solchen Systems bewundern, nämlich im Wetterbericht. Matrizen kann man auch in der Stochastik verwenden, z.B. um Wanderungen zu beschreiben. Z.B.: Jeden Monat wandern x\% der Kunden vom Anbieter A nach B, y\% von B nach C usw.
Was ist eine m-Matrix?
Jede (m,n)-Matrix ist durch Zeilen und Spalten gekennzeichnet. Dabei hat jede Matrix m-Zeilen. Die Zahl “m” steht dabei für die Anzahl der Zahlen bzw. Variablen, die in einer Matrix untereinander stehen.
Was versteht man unter einer mathematischen Matrix?
Gemäß der mathematischen Definition versteht man unter einer Matrix eine quadratische (2,2-Matrix) bzw. eine rechteckige Anordnung von mathematischen Objekten (z.B. Zahlen), wobei jede Matrix aus m Zeilen und n Spalten aufgebaut wird. Daher wird jede Matrix mit (m,n)-Matrix genauer gekennzeichnet.
Was ist die Zahl “m” in einer Matrix?
Die Zahl “m” steht dabei für die Anzahl der Zahlen bzw. Variablen, die in einer Matrix untereinander stehen. Manchmal werden die Zeilen einer Matrix auch als sogenannte Zeilenvektoren bezeichnet (oft hilft das um spezielle Lösungen eines Gleichungssystems zu bestimmen). Neben den m-Zeilen wird die Matrix noch durch n-Spalten aufgebaut.
Wie funktioniert die Matrix?
Die Matrix hat die Dimension . Matrizen lassen sich addieren, subtrahieren und multiplizieren. Außerdem kann man Matrizen transponieren sowie invertieren. Wie das funktioniert und was man dabei beachten muss, erfährst du in den folgenden Kapiteln:
Was ist eine quadratische Matriz?
Quadratische Matrizen Eine Matrix, deren Zeilen- und Spaltenanzahl übereinstimmt ( $m = n$ ), heißt quadratisch . Bekannte Vertreter dieser Gattung sind die 2×2- und 3×3-Matrizen, die häufig in Schule und Studium vorkommen.
Was sind die Elemente einer Matrix?
Die Elemente einer Matrix sind meist Zahlen. Es kommen aber auch z. B. Variablen und Funktionen infrage. Die Position eines Elementes – z. B. – wird mit einem Doppelindex gekennzeichnet: Dabei gibt der erste Index die Zeile und der zweite Index die Spalte an, in der das Element steht.